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Abstract 46	  

This is the second part of a three-part paper on North American climate in CMIP5 that 47	  

evaluates the 20th simulations of intra-seasonal to multi-decadal variability and 48	  

teleconnections with North American climate. Overall, the multi-model ensemble does 49	  

reasonably well at reproducing observed variability in several aspects, but does less well 50	  

at capturing observed teleconnections, with implications for future projections examined 51	  

in part three of this paper. In terms of intra-seasonal variability, almost half of the models 52	  

examined can reproduce observed variability in the eastern Pacific and most models 53	  

capture the midsummer drought over Central America. The multi-model mean replicates 54	  

the density of tropical disturbances and storms but with large spread among the models. 55	  

The coarse resolution of the models means that tropical cyclone frequencies are under 56	  

predicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of 57	  

ENSO are generally well reproduced, although teleconnections with North American 58	  

climate are widely varying among models and only a few models can reproduce the east 59	  

and central Pacific types of ENSO and connections with US winter temperatures. The 60	  

models capture the spatial pattern of PDO variability and its influence on continental 61	  

temperature and West coast precipitation, but less well for the wintertime precipitation. 62	  

The spatial representation of the AMO is reasonable but the magnitude of SST anomalies 63	  

and teleconnections are poorly reproduced. Multi-decadal trends such as the warming 64	  

hole over the central-southeast US and precipitation increases are not replicated by the 65	  

models, indicating that observed changes are linked to natural variability.  66	  

 67	  
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1. Introduction 68	  

This is the second part of a three-part paper on the Climate Model 69	  

Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) model simulations for 70	  

North America. This second part evaluates the CMIP5 models in their ability to replicate 71	  

the observed variability of North American continental and regional climate, and related 72	  

climate processes. The first part (Sheffield et al., 2012) evaluates the representation of the 73	  

climatology of continental and regional climate features. The third part (Maloney et al., 74	  

2012) describes the projected changes for the 21st century.  75	  

The CMIP5 provides an unprecedented collection of climate model output data 76	  

for the assessment of future climate projections as well as evaluations of climate models 77	  

for contemporary climate, the attribution of observed climate change and improved 78	  

understanding of climate processes and feedbacks. As such, these data will feed into the 79	  

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), and 80	  

other global, regional and national assessments. 81	  

The goal of this study is to provide a broad evaluation of CMIP5 models in their 82	  

depiction of North American climate and associated processes. It synthesizes and draws 83	  

from individual work by investigators within the CMIP5 Task Force of the US National 84	  

Oceanic and Atmospheric Administration (NOAA) Modeling Analysis and Prediction 85	  

Program (MAPP). This is part of a Journal of Climate special collection on North 86	  

America in CMIP5 and we draw from individual papers within the special issue, which 87	  

provide more detailed analysis that can be presented in this synthesis paper.  88	  

We begin in Section 2 by describing the CMIP5, providing an overview of the 89	  

models analyzed, the historical simulations and the general methodology for evaluating 90	  
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the models. Details of the main observational datasets to which the climate models are 91	  

compared are also given in this section. The next 5 sections focus on different aspects of 92	  

North American climate variability, organized by the time scale of the climate feature. 93	  

Section 3 covers intraseasonal variability with focus on variability in the eastern Pacific 94	  

Ocean and summer drought over the southern US and Central America. Atlantic and east 95	  

Pacific tropical cyclone activity is evaluated in Section 4. Interannual climate variability 96	  

is assessed in Section 5. Decadal variability and multi-decadal trends are assessed in 97	  

Sections 6 and 7, respectively. Finally, the results are synthesized in Section 8. 98	  

2. CMIP5 Models and Simulations 99	  

2.1. CMIP5 Models  100	  

We use data from multiple model simulations of the “historical” scenario from the 101	  

CMIP5 database. The CMIP5 experiments were carried out by 20 modeling groups 102	  

representing more than 50 climate models with the aim of further understanding past and 103	  

future climate change in key areas of uncertainty (Taylor et al., 2012). In particular, 104	  

experiments have been focused on understanding model differences in clouds and carbon 105	  

feedbacks, quantifying decadal climate predictability and why models give different 106	  

answers when driven by the same forcings. The CMIP5 builds on the previous phase 107	  

(CMIP3) experiments in several ways. Firstly a greater number of modeling centers and 108	  

models have participated. Secondly, the models are more comprehensive in terms of the 109	  

processes that they represent and are run at higher spatial resolution, therefore hopefully 110	  

resulting in better skill in representing current climate conditions and reducing 111	  

uncertainty in future projections. Table 1 provides an overview of the models used. The 112	  

specific models used vary for each individual analysis because of data availability at the 113	  
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time of this study, and so the model names are provided within the results section where 114	  

appropriate. 115	  

2.2. Overview of Methods 116	  

Data from the “historical” CMIP5 scenario are evaluated, which is a coupled 117	  

atmosphere-ocean mode simulation that is forced by historical estimates of changes in 118	  

atmospheric composition from natural and anthropogenic sources, volcanoes, greenhouse 119	  

gases and aerosols, as well as changes in solar output and land cover. For certain climate 120	  

features we also analyze model simulations from the CMIP3 that provided the underlying 121	  

climate model data to the fourth assessment report (AR4) of the IPCC. Several models 122	  

have contributed to both the CMIP3 and CMIP5 experiments, either for the same version 123	  

of the model, or for a newer version, and this allows a direct evaluation of changes in 124	  

skill in individual models as well as the model ensemble. 125	  

Historical scenario simulations were carried out for the period from the start of 126	  

the industrial revolution to near present: 1850-2005. Our evaluations are generally carried 127	  

out for the past 30 years, depending on the type of analysis and the availability of 128	  

observations. For some analyses the only, or best available, data are from satellite remote 129	  

sensing which restricts the analysis to the satellite period, which is generally from 1979 130	  

onwards. For other analyses, multiple observational datasets are used to capture the 131	  

uncertainty in the observations. The observational datasets are summarized in Table 2 132	  

and further details of the datasets and data processing are given in the relevant sub-133	  

sections and figure captions. Where the comparisons go beyond 2005 (e.g. 1979-2008), 134	  

data from the model RCP8.5 future projection scenario simulation are appended to the 135	  

model historical time series. About half the models have multiple ensemble members and 136	  
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these are averaged where appropriate or used to assess the variability across ensemble 137	  

members. 138	  

 139	  

3. Tropical Intraseasonal Variability 140	  

3.1. MJO-related variability over the eastern Pacific and adjoining regions 141	  

It has been well documented that convection over the eastern Pacific (EPAC) 142	  

ITCZ and neighboring areas is characterized by pronounced intraseasonal variability 143	  

(ISV) during boreal summer (e.g., Knutson and Weickmann, 1987; Kayano and Kousky, 144	  

1999; Maloney and Hartmann, 2000a; Maloney and Esbensen, 2003, 2007; de Szoeke 145	  

and Bretherton, 2005; Jiang and Waliser, 2008, 2009, 2011). ISV over the EPAC exerts 146	  

broad impacts on regional weather and climate phenomena described in the first part of 147	  

this paper (Sheffield et al., 2012), including tropical cyclone activity over the EPAC and 148	  

the Gulf of Mexico, the summertime gap wind near the Gulfs of Tehuantepec and 149	  

Papagayo, the Caribbean Low-Level Jet and precipitation, the mid-summer drought over 150	  

Central America and Mexico (see below), and the North American monsoon (e.g., 151	  

Magana et al., 1999; Maloney and Hartmann, 2000b; Maloney and Hartmann, 2000a; 152	  

Maloney and Esbensen, 2003; Lorenz and Hartmann, 2006; Serra et al., 2010; Martin and 153	  

Schumacher, 2010).  154	  

 Here, model fidelity in representing ISV over the EPAC and Intra-America Sea 155	  

(IAS) region is assessed by analyzing daily output of rainfall and 850hPa winds from 156	  

sixteen CMIP5 models. While model-simulated seasonal mean rainfall patterns on 157	  

continental scales in these models have been examined in Section 3.1 of part I of this 158	  

paper, detailed regional summer mean rainfall fields over the EPAC are further evaluated 159	  
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to explore the role of mean state on model performances in simulating the ISV. Figure 1 160	  

displays a Taylor diagram for summer mean (May-September) precipitation from in 161	  

CMIP5 models over the EPAC domain (150oW-80oW; 5oS-30oN) compared to the TMPA 162	  

precipitation. While the two HadGEM models (HadGEM2_CC and HadGEM2_ES) 163	  

display the highest pattern correlations (~0.93), the MRI_CGCM3 show the smallest 164	  

RMS due to its better skill in simulating the spatial standard deviations of summer mean 165	  

rainfall over the EPAC. In addition, four models (MPI_ESM_LR, CSIRO_MK3, 166	  

CanESM2, and CNRM_CM5) exhibit relatively better pattern correlation scores than 167	  

other models.    168	  

 The leading ISV modes over the EPAC based on observed and simulated rainfall 169	  

fields are identified using a complex empirical orthogonal function (CEOF) approach 170	  

(Maloney et al., 2008). CEOF analyses are applied to 30-90-day band-pass filtered daily 171	  

rainfall anomalies and the spatial amplitude and phase for the first CEOF mode (CEOF1) 172	  

based on TMPA are illustrated in Figures 2a and 2b. Similar to Maloney et al. (2008), the 173	  

maximum amplitude of the observed rainfall CEOF1 occurs over the far eastern part of 174	  

the EPAC. Figure 2b illustrates the pattern of spatial phase of observed rainfall CEOF1. 175	  

Note that the direction of propagation associated with the CEOF1 is indicated by the 176	  

gradient of the spatial phase. In agreement with previous studies, the observed leading 177	  

ISV mode associated with the CEOF1 largely exhibits an eastward propagation, while a 178	  

northward component is also evident (e.g., Jiang and Waliser, 2008; Maloney et al., 179	  

2008; Jiang et al., 2011).  180	  

 Next, the fidelity of the CMIP5 models in simulating the leading EPAC ISV 181	  

mode is assessed by calculating pattern correlations of the simulated rainfall CEOF1 182	  
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against observations. To increase sampling, spatial patterns of rainfall anomalies 183	  

associated with the CEOF1 based on both observations and model simulations are 184	  

derived at two quadratic phases by multiplying the CEOF1 amplitude by the Cosine and 185	  

Sine of spatial phase at each grid point, respectively. The pattern correlations are then 186	  

calculated at both of these two quadratic phases. A final pattern correlation score for a 187	  

particular model is derived by averaging these two pattern correlation coefficients. Figure 188	  

2c illustrates pattern correlation scores in depicting the CEOF1 rainfall pattern for each 189	  

model simulation versus domain averaged CEOF1 amplitude relative to observations. A 190	  

majority of the CMIP5 models tend to underestimate the amplitude of the leading EPAC 191	  

ISV mode associated with the rainfall CEOF1, except CNRM_CM5, MPI_ESM_LR, and 192	  

HadGEM2_CC and HadGEM2_ES. Seven models exhibit relative higher pattern 193	  

correlation scores (> 0.75). 194	  

 The models with relative better skill in representing the leading EPAC ISV mode  195	  

also largely exhibit better skill for summer mean rainfall (cf. Fig. 1 and Fig. 2c) and 196	  

850hPa wind patterns (not shown). A common feature among the more skillful models is 197	  

the presence of westerly or very weak easterly mean winds over the EPAC warm pool 198	  

region, as in the observations. Most of the models with relatively lower skill exhibit a 199	  

stronger easterly summer mean flow (> 4 m/s). This suggests that realistic representation 200	  

of the mean state could be conducive for improved simulations of the EPAC ISV, which 201	  

has also been discussed for MJO simulations over the western Pacific and Indian Ocean 202	  

(e.g., Kim et al., 2009). One hypothesis is that a realistic mean state produces the correct 203	  

sign of surface flux anomalies relative to intraseasonal precipitation, which helps to 204	  

destabilize the local intraseasonal disturbance (e.g. Maloney and Esbensen, 2005). 205	  
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 206	  

3.2. Mid-summer Drought over Central America 207	  

The rainy season in Central America and southern Mexico spans roughly May 208	  

through October. For most of the region, the precipitation climatology features maxima in 209	  

June and September and a period of reduced rainfall during July-August known as the 210	  

midsummer drought (MSD; Portig et al., 1961, Magaña et al., 1999). The MSD is regular 211	  

enough to be known colloquially and plays an important role in farming practices 212	  

(Osgood et al., 2009). A previous assessment of CMIP3 model performance at simulating 213	  

the MSD and future projections (Rauscher et al., 2008) suggested that many models are 214	  

capable of simulating the MSD despite an overall dry bias, and that the MSD is projected 215	  

to become stronger with an earlier onset. In this section, the CMIP5 performance at 216	  

simulating summertime precipitation and the MSD is evaluated. We evaluate 23 CMIP5 217	  

models against the TMPA, GPCP and UNAM observational datasets. A simple algorithm 218	  

for detecting and quantifying the climatological MSD is used that does not assume a 219	  

priori which months are maxima and which months constitute the MSD (Karnauskas et 220	  

al., 2012). 221	  

The large-scale distribution of summertime precipitation across the Inter-222	  

Americas region (Figure 3, top panel) is reasonably well simulated by the CMIP5 multi-223	  

model ensemble (MME) mean. However, several areas of disagreement exist including 224	  

underestimates of precipitation over the southernmost Pacific coast of Mexico through 225	  

Guatemala, the Caribbean coast of Central America, the Yucatan peninsula, Florida, as 226	  

well as the major Caribbean islands of Cuba, Hispaniola, and Jamaica. Many of these 227	  

biases may be related to orographic influences such as island effects and gap winds. 228	  
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Nevertheless, the CMIP5 MME does reasonably capture the essence of the MSD over 229	  

much of the Inter-Americas region (Figure 3, bottom panel). The maximum strength of 230	  

the MSD in the MME is found just offshore of El Salvador and represents a midsummer 231	  

precipitation minimum that is ~2.5 mm/day less than the early- and late-summer peaks. 232	  

Significant differences in the location and strength of the MSD between various 233	  

observational data sets preclude a definitive evaluation of the CMIP5 MME, but it is 234	  

clear that the strength of the MSD is underestimated in some regions, including along the 235	  

Pacific coast of Central America, the western Caribbean, the major Caribbean islands and 236	  

Florida. 237	  

 238	  

4. East Pacific and Atlantic tropical storm track and cyclone activity 239	  

Tropical storms and cyclones can have large social and economical impacts 240	  

around the globe. It is well known since the 1970s that climate models are able to 241	  

simulate tropical cyclone-like storms  (e.g. Manabe et al., 1970; Bengtsson et al., 1982). 242	  

As the resolution of the climate models increases, the modeled storm characteristics 243	  

become more realistic (e.g. Zhao et al., 2009). High-resolution climate models 244	  

projections for global tropical cyclone frequency and intensity are very robust across 245	  

models, while still differing on regional scales (Knutson et al., 2010). Analysis of CMIP3 246	  

model storms showed that the tropical cyclone-like storms produced still had many biases 247	  

common of low-resolution models (Walsh et al., 2010). Therefore, various dynamical and 248	  

statistical techniques for downscaling tropical cyclone activity using only the CMIP3 249	  

large-scale variables were employed (Emanuel et al., 2008; Knutson et al., 2008). 250	  
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Here we analyze the storms in CMIP5 models using two approaches. First, the 251	  

Hodges (1995) method identifies storm tracks based on 6-hourly 850hPa positive 252	  

vorticity centers with a minimum threshold of 0.5x10-6 s-1 which persist for at least 2 days 253	  

and have tracks of at least 1000 km in length. This method primarily identifies westward 254	  

moving disturbances such as easterly waves (e.g. Serra et al., 2010), although more 255	  

intense storms which could potentially reach hurricane intensity are not excluded. The 256	  

second approach is based on the tracking method described in Camargo and Zebiak 257	  

(2002), which uses low-level vorticity, surface winds, surface pressure, and atmospheric 258	  

temperature to identify tropical cyclones, and considers only warm core storms. Only a 259	  

subset of the tropical disturbances will intensify enough to be identified by the second 260	  

tracking method and the percentage that this occurs will vary among different models. 261	  

The CMIP5 standard models have trouble simulating the number of tropical cyclones, 262	  

which can be attributed in part to their coarse resolution. In section 4.3 we show results 263	  

from the GFDL high-resolution model. 264	  

 265	  

4.1. Tropical Storm Track 266	  

The tropical storm track density is calculated based on the method of Hodges 267	  

(1995) using 6-hourly, 850 hPa relative vorticity from the first ensemble members  of 268	  

seven models and compared to the ERA-Interim (Figure 4, top). Mean track strength is 269	  

simply the mean of the smoothed 850 hPa vorticity along the track (Figure 4, bottom).  270	  

The multi-model mean track density is in good agreement with the ERA-Interim data, 271	  

however significant differences are seen with the individual models. The most apparent 272	  

discrepancies are with the CanESM2 and CCSM4 models, which strongly overestimate 273	  
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activity across the East Pacific and western Caribbean and suggest a more longitudinally 274	  

oriented track shifted south from what is observed. HadGEM2-ES and MIROC5 275	  

underestimate tracks in the West Atlantic, while GFDL-ESM2M underestimates tracks 276	  

throughout the region except near 130°W. MPI-ESM-LR also underestimates tracks 277	  

across the region as well as shifts their location southward. The track density maximum 278	  

off the west coast of Mexico is best captured by HadGEM2-ES. The mean track strength 279	  

maximum in the East Pacific lies along the west coast of Mexico and is well captured by 280	  

the multi-model mean, although it is somewhat stronger than in the ERA-Interim (Figure 281	  

4, bottom). On the other hand, the multi-model mean strength in the Gulf of Mexico and 282	  

West Atlantic along the east coast of the US is strongly underestimated compared to 283	  

ERA-Interim. Unlike for track density, these biases are fairly consistent among the 284	  

models. 285	  

 286	  

4.2. Tropical Cyclones in the North Atlantic and Eastern North Pacific 287	  

Tropical-cyclone (TC) type structures were tracked in five models for 1950-2005 288	  

using the method of Camargo and Zebiak (2002), which uses 6-hourly low-level 289	  

vorticity, surface winds, surface pressure, atmospheric temperature. The method 290	  

considers only warm core storms and uses model-dependent (and resolution) thresholds 291	  

and storms have to last at least two days. We compare with the observed tropical 292	  

cyclones from best-track datasets of the National Hurricane Center. Figure 5 shows the 293	  

tracks of tropical cyclone-like structures for five models and the observations for the 294	  

north Atlantic and eastern north Pacific. The number of TCs in all models is much lower 295	  

than in observations, which is common to many low-resolution global climate models 296	  
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(e.g. Camargo et al., 2005, 2007). The HadGEM2 has the largest low bias and the MPI 297	  

model has the most realistic tracks in the Atlantic basin. The MRI model tracks in the 298	  

Atlantic are mostly in the subtropical region, with very few storms in the deep tropics. In 299	  

contrast, in the eastern North Pacific the MRI has storm activity too near the equator. In 300	  

the eastern North Pacific, very few storms (in all models) have westward tracks. The 301	  

models seem to have an easier time in producing storms that are in the northwestward 302	  

direction parallel to the Central America coast. 303	  

Figure 6 shows the mean number of TCs per month for the North Atlantic and 304	  

eastern North Pacific. In some cases, the models produce too many storms in the off-305	  

season, while all models produce too few storms in the peak season. The bottom panels 306	  

show the spread of the number of storms per year as box plots in the models and 307	  

observations, emphasizing the low number of storms per year in all models. Examination 308	  

of variability across ensemble members in producing tropical cyclones was carried out 309	  

for five member runs of the MRI model (not shown) but was much less than among 310	  

different models. 311	  

 312	  

4.3. High-Resolution Model Results 313	  

The ability of models to simulate tropical cyclone activity is limited partly by 314	  

their relatively coarse spatial resolutions. Recent studies suggest that when forced by 315	  

observed SSTs and sea-ice concentration, a global atmospheric model with a resolution 316	  

ranging from 50km to 20km can simulate many aspects of TC/hurricane frequency 317	  

variability for the past few decades during which reliable observations are available (e.g., 318	  

Sugi et al. 2002; McDonald et al. 2005; Yoshimura et al. 2006; Oouchi et al. 2006; 319	  
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Bengtsson et al. 2007; Gualdi et al. 2008; LaRow et al. 2008; Zhao et al. 2009). This 320	  

includes the geographical distribution of storm genesis and track locations, seasonal cycle 321	  

and interannual variability of storm frequency over the North Atlantic and East Pacific 322	  

basins. The success is not only a direct evaluation of model capability but also an 323	  

indication of the dominant role of SST variability on TC/hurricane frequency variability. 324	  

In this section we present results from high-resolution simulations with the GFDL 325	  

C180HIRAM model forced by observed boundary conditions. Historic downscaling 326	  

experiments (Held et al. 2012) using the model were forced by prescribed inter-annually 327	  

and seasonally varying SSTs and sea-ice concentration from the HadISST dataset. The 3-328	  

member ensemble simulation was run for 1981 to 2008. The storm detection and tracking 329	  

algorithm is described in (Zhao et al. 2009). We focus on TCs with near-surface wind 330	  

speed reaching hurricane intensity.  331	  

Figure 7 shows the observed and C180HIRAM simulated hurricane tracks for the 332	  

N. Atlantic and E. Pacific for 1981-2008. The annual mean numbers of hurricanes and 333	  

their statistics are shown in Figure 8a. The simulations reproduce fairly well the observed 334	  

statistics although the model appears to slightly underestimate the observed variances of 335	  

interannual variability in the N. Atlantic. Figure 8b,c show that the model also captures 336	  

the observed seasonal cycle in both the N. Atlantic and E. Pacific. The model can also 337	  

reproduce the observed year to year variation of annual hurricane count as well as the 338	  

decadal trend for both basins for this period (Zhao et al. 2009; Held and coauthors 2012). 339	  

The quality of the model’s present-day simulation of N. Atlantic and E. Pacific hurricane 340	  

statistics increases our confidence in future predictions using this model.  341	  

 342	  
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5. Interannual to decadal variability 343	  

 344	  

5.1. El Niño-Southern Oscillation (ENSO) 345	  

The ENSO is the most important driver of global climate variability on inter-346	  

annual time scales. It impacts many regions worldwide through climate teleconnections 347	  

(Ropelewski and Halpert, 1987), which link the tropical Pacific to higher latitudes 348	  

through shifts in mid-latitude weather patterns. The impact of ENSO on North American 349	  

climate is felt most in the wintertime, with El Niño events bringing warmer temperatures 350	  

to much of the northern part of the continent and wetter conditions in the southern US 351	  

and northern Mexico. La Niña events tend to bring drier weather to the southern US. The 352	  

ability of CMIP5 models to simulate ENSO is carried out for several aspects of ENSO 353	  

variability and for teleconnections with North American climate.  354	  

 355	  

A. Evaluation of ENSO teleconnections 356	  

We examine how well the historical simulations of CMIP5 models reproduce the 357	  

composite near-surface air temperature (SAT) and precipitation patterns over North 358	  

America during El Niño and La Niña episodes. In both model and observed data, we 359	  

define ENSO episodes similarly to the Climate Prediction Center (CPC). A monthly 360	  

ENSO index is calculated from detrended and high-pass filtered SSTs over the Niño3.4 361	  

region (5oS – 5oN, 170oW - 120oW) from ERSSTv3b observations and CMIP5 models. 362	  

An El Niño (La Niña) episode is defined as any sequence of months where the three-363	  

month running mean Niño3.4 SST, is greater than 0.5oC (less than -0.5oC) for at least five 364	  

consecutive three-month running seasons and the peak amplitude of the ENSO episode 365	  
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occurs during the boreal fall or winter. In the ensemble mean, the frequency of ENSO 366	  

episodes and the mean peak amplitude are similar to observed values (not shown). 367	  

In observations approximately 93% of El Niño and 90% of La Niña episodes 368	  

feature peak amplitudes in fall or winter. In the CMIP5 ensemble of the historical 369	  

simulations, however, only 69% of El Niño and 66% of La Niña episodes have peak 370	  

amplitudes in fall or winter, although a couple of models (CanESM2 and NorESM1-M) 371	  

do have fall/winter peak frequencies exceeding 80% for both El Niño and La Niña 372	  

episodes. This finding suggests that CMIP5 models do not fully reproduce the phase-373	  

locking of ENSO to the seasonal cycle, a deficiency noted in CMIP3 models as well 374	  

(Guilyardi et al. 2009). The following analysis focuses on those episodes that do peak in 375	  

fall or winter.  376	  

For each identified ENSO episode, we calculate composites of seasonal North 377	  

American SAT and precipitation anomalies (seasonal cycle removed and detrended) from 378	  

the models and CRU TS3.1 observations, beginning in the fall of the developing episode 379	  

year, and ending in the summer of the decay year. To focus on differences in spatial 380	  

patterns rather than differences owing to variations in ENSO amplitude, the anomalies 381	  

are normalized by the peak amplitude of the episode so that the composite maps represent 382	  

anomalies per oC of Niño3.4 SST peak amplitude. We assess how well the models 383	  

reproduce the observed ENSO-related SAT and precipitation patterns if they are 384	  

statistically distinguishable in a test of field significance based on the “false discovery 385	  

rate” (FDR) (Benjamini and Hochberg 1995, Wilks 2006) at the 90%, 95%, and 99% 386	  

confidence levels (Figure 9). Model performance in reproducing the observed patterns is 387	  

quite variable, with significant differences for many models and seasons and for both 388	  
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variables and ENSO phases. The ensemble mean calculations (pooled ENSO episodes 389	  

from all models) reveal that the most significant differences occur in winter and spring. 390	  

Moreover, because the individual model patterns are quite variable, the amplitude of the 391	  

ensemble mean pattern is quite weak (see Fig. 10). This point is illustrated in the 392	  

observed and CMIP5 ensemble composite SAT and precipitation patterns for DJF(0/1), 393	  

shown in Fig. 10. The observed SAT and precipitation composites feature peak 394	  

amplitudes exceeding 1oC oC-1 and 0.5 mm day-1 oC-1, but the CMIP5 ensemble 395	  

composites are much weaker. Moreover, the composites for La Niña episodes fail even to 396	  

resemble the general observed patterns. These results suggest that large model differences 397	  

in ENSO SST patterns, downstream teleconnection patterns, and associated influences on 398	  

temperature and precipitation result in widely diverging SAT and precipitation patterns 399	  

associated with ENSO, especially in winter and spring. 400	  

 401	  

B. East Pacific/Central Pacific ENSO and Teleconnections with US Winter Surface Air 402	  

Temperautre 403	  

It has been increasingly recognized that different types of ENSO occur in the 404	  

tropical Pacific (e.g. Wang and Weisberg, 2000; Trenberth and Stepaniak, 2001; Larkin 405	  

and Harrison, 2005; Yu and Kao, 2007; Ashok et al., 2007; Kao and Yu, 2009; Kug et al., 406	  

2009). Two particular types that have been emphasized are the Eastern-Pacific (EP) type 407	  

that produces SST anomalies near the South America coast and the Central-Pacific (CP) 408	  

type that produces anomalies near the international dateline. While the EP ENSO is the 409	  

conventional type of ENSO, the CP ENSO has gradually increased its occurrence during 410	  

the past few decades (e.g. Lee and Mcphaden, 2010). Recent observational studies have 411	  
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indicated that the impacts produced by these two types of ENSO on North American 412	  

climate can be different (e.g., Mo 2011, Yu et al. 2012). Here the ENSO teleconnection 413	  

over the US simulated in the CMIP5 models are further examined according to the ENSO 414	  

type. Following Kao and Yu (2009) and Yu and Kim (2010), a regression-Empirical 415	  

Orthogonal Function (EOF) analysis is used to identify the CP and EP types of El Niño 416	  

from monthly SSTs. The SST anomalies regressed with the Niño1+2 SST index were 417	  

removed before the EOF analysis was applied to obtain the spatial pattern of the CP 418	  

ENSO. Similarly, we subtracted the SST anomalies regressed with the Niño4 SST index 419	  

before the EOF analysis was applied to identify the leading structure of the EP ENSO. 420	  

The principal components of the leading EOF modes obtained from this analysis 421	  

represent the ENSO strengths and are defined as the CP ENSO index and the EP ENSO 422	  

index. The winter (DJF) SAT anomalies regressed to theses two indices are different over 423	  

the US (Figure 11a,b) with a warm northeast to cold southwest pattern for the EP El Niño 424	  

and a warm northwest to cold southeast pattern for the CP El Niño. Adding these two 425	  

impact patterns together results in a pattern that resembles the classical warm-north, cold-426	  

south pattern of El Niño impact as shown in Figure 10. Data from the NCEP-NCAR 427	  

reanalysis and ERSST V3b during 1950-2010 were used for this analysis. 428	  

We repeated the EOF and regression analyses to evaluate how well the CMIP5 429	  

models reproduce the different US impacts to the two types of ENSO. The regressed 430	  

winter SAT anomaly patterns calculated from twenty CMIP5 models are shown in Figure 431	  

11. The observed impact patterns on the US winter SAT are well simulated by some 432	  

models, such as the MIROC5 and MRI-CGCM3 for the EP ENSO and the NorESM1-M 433	  

and HadGCM2-ES for the CP ENSO. However, some models show an impact pattern 434	  



	   20 

that is almost opposite to that observed, such as HadCM3 for the CP ENSO and 435	  

INMCM4 for the EP ENSO. To quantify how well the impact patterns are simulated, 436	  

pattern correlation coefficients are calculated between the model regressed patterns and 437	  

the NCEP regressed patterns. As shown in Figure 12, there are seven CMIP5 models 438	  

(GFDL-ESM-2M, HADGEM2-ES, IPSL-CM5-MR, MIROC5, MPI-ESM-LR, MPI-439	  

ESM-P, NorESM1-M) whose pattern correlation coefficients for both the EP ENSO and 440	  

the CP ENSO are larger than 0.5. This group of the CMIP5 models is considered as the 441	  

models whose regressed US winter temperature patterns are close to the observed 442	  

patterns for the two types of ENSO. According to Kim and Yu (2012), five of these 443	  

models (GFDL-ESM2M, HadGEM2-ES, MPI-ESM-LR, MPI-ESM-P, and NorESM1-M) 444	  

are also the CMIP5 models that produce strong intensities of both types of ENSO. 445	  

 446	  

C. ENSO warm/cold events asymmetry 447	  

ENSO asymmetry refers to the fact that the two phases of ENSO are not mirror 448	  

images of each other (Burgers and Stephenson, 1999). The asymmetry shows up in both 449	  

the surface and subsurface fields (Rodgers et al., 2004; Schopf and Burgman, 2006; Sun 450	  

and Zhang, 2006; Zhang et al., 2009). Causes for such an asymmetry are not yet clearly 451	  

understood, but accumulating evidence suggests that it is is likely a consequence of 452	  

nonlinearity of ocean dynamics (Jin et al., 2003; Sun 2010, Liang et al., 2012). 453	  

Asymmetry is also linked to the time-mean effect of ENSO (Sun and Zhang, 2006; 454	  

Schopf and Burgman, 2006; Sun, 2010, Liang et al. 2012). Understanding the causes and 455	  

consequences of ENSO asymmetry may hold the key to understanding decadal variability 456	  

in the tropics and beyond (Rodgers et al., 2004; Sun and Yu, 2009, Liang et al., 2012). 457	  
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Figure 13 shows the sum of the SST anomalies between the warm and cold phases of 458	  

ENSO from HadISST observations and CMIP5 models. The threshold value used for 459	  

defining the warm and cold phase anomalies is set as +0.5 oC and -0.5 oC respectively. 460	  

This sum has also been called the SST anomaly residual and has been a common measure 461	  

of the ENSO asymmetry in the SST field. All models underestimate the observed positive 462	  

SST residual (and therefore the asymmetry) over the eastern Pacific. Measured by the 463	  

skewness of Niño3 SST anomalies (which is a more rigorous measure of asymmetry), all 464	  

the models also underestimate the observed ENSO asymmetry (Figure 14). The figure 465	  

also shows that the stronger variability of ENSO (measured by variance) does not 466	  

guarantee a stronger asymmetry in ENSO (measured by skewness).  467	  

 468	  

5.2. Persistent droughts and wet spells over Great Plains and the southern-tier states  469	  

Persistent dry and wet summers are features of the US Great Plains and southern 470	  

US. We evaluate how the CMIP5 models describe the processes that cause such 471	  

persistent anomalies in terms of low-level circulation and moisture flux anomalies by 472	  

comparing with the NCEP-NCAR reanalysis. This complements the evaluations of the 473	  

average seasonal circulation in the region, such as the low-level southerly jet as shown in 474	  

part 1 of this paper (Sheffield et al., 2012). Persistent wet and dry summers are defined 475	  

by JJA precipitation anomalies averaged over the Great Plains region from 90º-105ºW 476	  

and 30º-50ºN during 1971-2000. Wet (dry) summers are identified as having normalized 477	  

JJA precipitation larger (smaller) than 0.6 (-0.6) standard deviation. The reanalysis data 478	  

identify 8 wet and 7 dry summers in 1971-2000, and the models identify between 7 and 479	  

12 events. We show the composites of vertically integrated moisture from the surface to 480	  
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top of the troposphere, the 850hPa geopotential height, and near surface winds at 925hPa 481	  

for the wet and dry summers and their differences for the reanalysis (Figure 15) and for a 482	  

single model, CCSM4, as an example (Figure 16). 483	  

Comparisons of the two figures indicate some similarities and also some quite 484	  

different processes causing the persistent wet or dry summers. The integrated moisture 485	  

fluxes in both datasets indicate a high moisture in an averaged cyclonic rotation in the 486	  

troposphere in persistent wet summers (Figs. 15a and 16a) but anticyclonic rotation in dry 487	  

summers (Figs. 15b and 16b) in the Great Plains. However, the sources of the moisture 488	  

and the low-level dynamic structure are quite different. For the reanalysis, the 489	  

convergence of moisture in the central Great Plains during wet summers results from 490	  

southerly flow anomalies in the enhanced subtropical high pressure system in the North 491	  

Atlantic and northerly flow anomalies in low pressure anomalies centered in the Midwest 492	  

(Fig. 15d). These anomalies suggest a frontal system along the depression from the 493	  

Midwest to the Southwest. A nearly reversed pattern of flow anomalies is shown during 494	  

the dry summers (Figs. 15e and 15f). The model simulations show a different pattern of 495	  

flow anomalies (Figs. 16d and e). In wet summers, the moisture is primarily from the east 496	  

along the easterly and southeasterly quadrants of a high pressure anomaly center in the 497	  

Great Lakes areas, instead of from the south as in the reanalysis result (Figs. 16a vs. 15a). 498	  

In dry summers, the model suggests dry flows from the Mexican plateau off the Sierra 499	  

Madre Oriental in Mexico. These contrasts are shown in Fig. 16f. The other models in 500	  

CMIP5 also simulated different tropospheric circulation patterns from those in the 501	  

reanalysis for either the wet or dry summers in the Great Plains.  502	  

 503	  
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6. Decadal Variability 504	  

 505	  

6.1. Pacific Decadal Oscillation (PDO) and its influence on North American climate 506	  

On interdecadal timescales, variability in the tropical and extratropical North 507	  

Pacific, particularly that of the Pacific Decadal Oscillation (PDO), has significant 508	  

physical and ecological impacts over North America (Mantua et al. 1997, Higgins et al. 509	  

2000, Meehl et al. 2012). We examine the PDO and its relationships with N. American 510	  

temperature and precipitation for 17 CMIP5 models. In both observations and the 511	  

historical runs we define the PDO in a similar manner to that of Zhang et al. (1997) and 512	  

Mantua et al. (1997). We define the PDO as the leading empirical orthogonal function of 513	  

extended winter (November-April) monthly mean sea surface temperature (SST) 514	  

anomalies in the North Pacific poleward of 20oN (Zhang et al. (1997) and Mantua et al. 515	  

(1997)) for the period from 1900-1993. We subtract the monthly global mean SST prior 516	  

to the analysis. We then calculate the PDO index by projecting monthly North Pacific 517	  

SST anomalies onto the PDO pattern for all available months and then standardizing the 518	  

resulting time series. For the observed PDO, we use the HadISST dataset for the period 519	  

between 1870 and 2009. For the CMIP5 models, the analysis period begins as early as 520	  

1850 and extends to 2005. We use a single realization for each model. Figure 17 521	  

illustrates the PDO patterns in both observations and the CMIP5 ensemble obtained by 522	  

regressing the unfiltered monthly SST anomalies upon the PDO index for all calendar 523	  

months. As in the CMIP3 models (Oshima and Tanimoto 2009, Furtado et al. 2011), the 524	  

CMIP5 models reproduce the basic PDO horseshoe SST pattern. The most notable 525	  

difference is the westward shift of the North Pacific center of action in models with 526	  
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respect to observations (Figure 17c). The regions with the largest differences also 527	  

correspond with regions of relatively high inter-model variability (Figure 17d).  528	  

PDO relationships with North American climate are evaluated in Figure 18, which 529	  

summarizes which CMIP5 regression patterns are significantly different from those based 530	  

on observations. For each set of regressions, we determine whether the model and 531	  

observation regression maps are significantly different with a “false discovery rate” 532	  

(FDR) field significance test, as described in the ENSO composite analysis above.  For 533	  

most models and most seasons, the differences in the regression patterns are not 534	  

statistically significant. The lack of significant differences likely owes to a combination 535	  

of small effective sample size, a relatively modest impact of the PDO on seasonal SAT 536	  

and precipitation, and the ability of the models to capture the general PDO behavior.  537	  

When considering the entire ensemble, however, the increased sample size brings out 538	  

differences in winter and spring precipitation regressions that are statistically significant 539	  

at the 95% confidence level. 540	  

To illustrate the discrepancies during DJF, Figure 19 shows the SAT and 541	  

precipitation regressions in observations and the CMIP5 ensemble. The CMIP5 models 542	  

do rather well in capturing the PDO influence on North American SAT, with positive 543	  

(negative) SAT anomalies in northwest (southeast) North America during the positive 544	  

phase of the PDO. Almost all local differences in the regression coefficients are not 545	  

statistically significant. In contrast, the CMIP5 models perform somewhat poorly in 546	  

reproducing the precipitation patterns over large parts of North America. Both 547	  

observations (Fig. 19b) and CMIP5 ensemble (Fig. 19d) produce a tripole pattern of 548	  

precipitation anomalies over the west coast of North America. Large differences, 549	  
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however, are found in eastern North America. In observations, the positive phase of the 550	  

PDO is associated with reduced wintertime precipitation in the Tennessee and Ohio 551	  

Valleys, northeastern U.S., and Southeastern Canada (Fig. 19b), but the CMIP5 ensemble 552	  

fails to discern this influence (Fig. 19d, f). Though of smaller magnitude, significant 553	  

differences also occur in central North America (Fig. 19f). In spring (MAM) the largest 554	  

differences in the precipitation regressions occur along the coast of British Columbia, 555	  

where observed regressions indicate positive anomalies but the CMIP5 ensemble 556	  

produces a pronounced negative anomaly (not shown). Both observations and the CMIP5 557	  

ensemble reproduce positive precipitation anomalies along the west coast and central 558	  

plains of the U.S. 559	  

 560	  

6.2. Atlantic Multidecadal Oscillation (AMO) 561	  

The Atlantic Multidecadal Oscillation (AMO) is an important feature of North 562	  

Atlantic variability with a period of the order of 65 - 70-yr (Kerr, 2000), and is associated 563	  

with impacts on tropical and mid-latitude climate, including N. American summertime 564	  

precipitation (Enfield et al, 2001; Sutton and Hodson, 2005) and linkages to Atlantic 565	  

hurricane occurrence (Goldenberg et al., 2001). The AMO index is defined as the 566	  

detrended North Atlantic SST during the Atlantic hurricane season of June to November 567	  

(JJASON) from the equator to 60°N, 75°W-5°W with the 11-year running mean (e.g., 568	  

Enfield et al. 2001; Knight et al. 2005). As shown in Figure 20a, the individual models 569	  

show highly varying amplitudes and phases, but all models capture the North Atlantic 570	  

warming in the recent decades. Two major discrepancies between the observation and 571	  

models are during the 1930s-40s when the models underestimate the warming, and 572	  
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during 1910s-20s when the models underestimate the cooling. The lagged 573	  

autocorrelations of the AMO indices show the persistence of the modeled AMO (Fig. 574	  

20b), suggesting the potential for predicting the North Atlantic SST anomalies. 575	  

The tropospheric vertical wind shear in the main development region (MDR) is an 576	  

important factor that affects the formation and development of Atlantic hurricanes, with a 577	  

small (large) wind shear favoring (disfavoring) Atlantic hurricane activity.  Following a 578	  

typical wind shear definition in the literature (e.g., Goldenberg et al., 2001; Wang et al., 579	  

2006; Aiyyer and Thorncroft, 2006; Vecchi and Soden, 2007), the vertical wind shear is 580	  

defined as the magnitude of the vector difference between winds at 200 hPa and 850 hPa.  581	  

The AMO-related wind shear is shown by regressing the vertical wind shear onto the 582	  

AMO indices during JJASON (Fig. 21).  The 20CR reanalysis product shows that the 583	  

AMO is associated with negative wind shear regressions in the MDR, indicating that the 584	  

warm (cold) phase of the AMO corresponds to reduced (enhanced) wind shear which is 585	  

in turn favorable (unfavorable) for Atlantic hurricane activity (e.g., Goldenberg et al., 586	  

2001). Of the 23 models, 10 models are able to simulate the negative wind shear in the 587	  

MDR. The discrepancies in the other models may be due to the inaccurate representation 588	  

of the AMO itself and/or inaccurate representation of the wind response to the AMO. 589	  

The decadal modulation of SSTs in the Atlantic Ocean, via the AMO, has been 590	  

shown to have an important impact on extreme droughts and wet episodes over the 591	  

central US (Nigam et al. 2011). The ability of the models to capture the AMO and its 592	  

hydroclimate impact over North America in summer and fall are explored Figure 22 and 593	  

shown in more detail in Kavvada et al. (2012). Its SST signature and hydroclimate impact 594	  

in summer and fall are obtained by regressing it on the regional seasonal precipitation and 595	  
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SSTs for 1901-1999. The SST signature of the AMO is stronger in fall than in summer 596	  

and this is reflected in its impact on central US precipitation in observations. In both 597	  

seasons the SST anomalies reach a maximum over the mid Atlantic, over the sub-polar 598	  

gyre region, with normal conditions over the Gulf of Mexico and north of the Greater 599	  

Antilles. The warm phase of the AMO induces drying conditions over the central US and 600	  

wet conditions over Florida and the US northeast in both seasons, but with more intensity 601	  

in fall. However, there are seasonally contrasting conditions along the Gulf of Mexico 602	  

states where decreased precipitation occurs in summer but increased precipitation occurs 603	  

in fall. These hydroclimate impacts highlight the importance of the AMO seasonality.  604	  

In general the models do not capture the SST seasonality of the AMO well. 605	  

Simulated SST anomalies are larger in summer than in fall and the simulated 606	  

hydroclimate impact lacks the drying over the central US. The extension of the SST 607	  

anomalies in CCSM4 is confined to the mid and northern latitudes of the Atlantic. The 608	  

GFDL-CM3 SST anomalies extend to the whole Atlantic and a footprint over the 609	  

Greenland Sea is also evident. The SST anomalies in HadGEM2-ES are larger than 610	  

observations and are placed to the southeast of Greenland. Its structure is similar to that 611	  

in observations but with a larger area of normal conditions over the western tropical 612	  

Atlantic in summer. The MPI-ESM-LR model misplaces the maximum SST anomalies 613	  

over the eastern mid Atlantic, with no observed tropical extension. For the hydroclimate 614	  

impacts, the buildup of the drying conditions over the central US and the wet conditions 615	  

along the coastal south Atlantic US states from summer to fall are not well captured by 616	  

the models. The initial drying over the south central US in summer is only captured by 617	  

HadGEM2-ES, while the wet conditions over the south Atlantic US states are captured to 618	  
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different degree by the models. The intensification of the drying of the central US in fall 619	  

is also best captured by the HadGEM2-ES model, followed by the MPI and GFDL-CM3 620	  

models. CCSM4 shows no drying over the region but it is the only model showing wet 621	  

conditions along the eastern coastal plains of the US. 622	  

 623	  

7. Multidecadal Trends 624	  

 625	  

7.1. Trends in Temperature and the ‘warming hole’ over the southeastern US  626	  

A unique of feature of US temperature change during the 20th century is the so-627	  

called “warming hole (WH)” observed in the southeastern US (Pan et al, 2004). While 628	  

global warming accelerated in the 20th century, the WH region experienced cooling, 629	  

especially in summer during the latter half of the century. Studies have attributed the 630	  

mechanisms for this abnormal cooling (lack of warming) trend to large-scale decadal 631	  

oscillations such as PDO and AMO (Robinson et al., 2002, Kunkel et al., 2006, Meehl et 632	  

at., 2012) and  to regional scale hydrological processes (Pan et al., 2004) and land surface 633	  

interactions (Liang et at. 2007). It was a challenge for most CMIP3 models to reproduce 634	  

the WH (Kunkel et. al., 2006). 635	  

 We evaluate whether the CMIP5 models capture the warming hole in Figures 23 636	  

and 24, which shows the annual and seasonal trends, respectively, in near surface air 637	  

temperature from the observation and the CMIP5 multi-model mean. We evaluated 19 638	  

models, and for all available ensemble members, totaling 96 ensemble members. For the 639	  

multi-model mean spatial plot, the best ensemble member from each model having 640	  

highest spatial correlation with the observation are selected. Model and observation data 641	  
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are re-gridded to a common resolution 2.5° ×  2.5° using area averaging. Trends are 642	  

calculated for the 1930-2004 period using the Theil-Sen approach (Theil, 1950; Sen, 643	  

1968). The choice of 1930-2004 gives a prominent warming hole signal starting from the 644	  

warmest decade following the Dust Bowl drought. The models do well in simulating the 645	  

north-south gradient in warming rates. The multi-model mean also shows a lesser 646	  

warming region, compared to the surrounding region, in the central US. However, the 647	  

multi-model mean fails to capture the absolute negative temperature trend as found in the 648	  

observation. 649	  

The observed WH is more evident in the eastern US during summer and thus we 650	  

separated temperature trend between eastern and western US during summer and winter. 651	  

(Figure 24). The observed summer cooling is prominent in the north central US, while 652	  

winter cooling is prominent along the Southeastern Coastal region. In summer, the 653	  

models generally have difficulty in simulating the cooling trend in the north central US, 654	  

and also the east-west gradient in summer warming rates (Fig. 24a). In winter, the 655	  

multimodel mean produces the spatial pattern of the temperature trend, showing less 656	  

warming in the southeastern coastal region. The east-west gradient in temperature trend 657	  

also matches reasonably well with the observation (Fig. 24b). The seasonal difference in 658	  

the models’ skill may reflect different mechanisms responsible for the WH in summer 659	  

and winter. In winter, decadal variation is stronger over the US, whereas in summer local 660	  

forcing, such as land surface processes, are more prominent. This seems to suggest that 661	  

models can more easily capture large-scale dynamics in winter including decadal 662	  

variations, but struggle to simulate regional scale processes during the summer.  663	  
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Figure 25 shows the temporal evolution of the winter trends over the eastern US 664	  

in the observation and models, and relative to the western US. The absolute negative 665	  

trend (warming hole) in the eastern US shows multidecadal variability, which peaked 666	  

between 1930 and 1960. For most of the 20th century the western US warmed faster than 667	  

the east (negative East - West Trend). The 95% model spread range brackets the observed 668	  

multidecadal variability in the eastern US temperature trend. Approximately half of the 669	  

model simulations show negative temperature trends in the eastern US, as well as a 670	  

negative (East – West) temperature trend difference. However, the decadal variability 671	  

varies considerably between models, making it difficult for the multimodel mean to 672	  

capture the amplitude of observed multidecadal variability. This result suggests that the 673	  

US warming hole is partly contributed by the natural multidecadal variability in the 674	  

climate system. 675	  

 676	  

7.2. Trends in Diurnal Temperature Range (DTR)  677	  

Observed warming during the day and night has been asymmetric, with nocturnal 678	  

minimum surface air temperature (Tmin) rising about twice as fast than daytime 679	  

maximum temperature (Tmax) during the second half of 20th century, mostly during 680	  

1950-1980 (Vose et al., 2005). Changes in cloud cover, among atmospheric water vapor, 681	  

soil moisture and other factors, accounts for 25-50% of the DTR reduction (Dai et al., 682	  

1999). Cloud cover, soil moisture, precipitation, and atmospheric/oceanic teleconnections 683	  

account for up to 80% of regional variance over 1901-2002. Over the U.S., cloud cover 684	  

alone accounts for up to 63% of regional annual DTR variability (Lauritsen and Rogers, 685	  

2012). Global Tmin increased by 0.20 °C dec-1 while Tmax increased by 0.14 °C dec-1 686	  
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from 1950–2004, resulting in a DTR decrease of −0.07°C (Voss et al., 2005). During the 687	  

same period over North America (175-60°W, 15-75°N), summer Tmax and Tmin 688	  

increased 0.07 and 0.12 °C, respectively, resulting in a -0.05 °C decrease in DTR. A 689	  

similar decrease (-0.06 °C) occurred in winter.  Over the WH region (105-80W, 30-45N), 690	  

summer Tmax actually decreased sharply (-0.13 oC) while Tmin increased slightly (0.05 691	  

°C), yielding a DTR decrease of 0.18 °C. Winter DTR also decreased by 0.13 °C. 692	  

Figure 26 shows a comparison of the linear trend in DTR from 23 models against 693	  

the CRU TS3.1 observational dataset. In summer (top), the models capture a cooling 694	  

trend in central U.S., roughly corresponding to the WH region (Fig. 24) although the 695	  

position is shifted to the west and the magnitude is lower. In winter the models largely 696	  

reproduce the broad decrease in DTR as observed, but again with lower magnitude. The 697	  

inter-model variance (contours in Fig. 26), a measure of uncertainty in the simulations, is 698	  

largest over southwestern/Mexico (summer) and western (winter) U.S., likely arising 699	  

from complex topography along the Rocky mountain ranges. 700	  

   701	  

7.3. Trends in Precipitation 702	  

Precipitation has generally increased over North America in the last half of the 703	  

20th century (Karl and Knight, 1998; Zhang et al., 2000). Trends in precipitation are 704	  

positively correlated with streamflow trends, thereby affecting water resource availability 705	  

and flood potential (Lettenmaier et al. 1994; McCabe and Wolock 2002, Kumar et al. 706	  

2009). Figure 27 shows the multi-model ensemble average precipitation trend from 19 707	  

models against the CRU observations. The multi-model average weakly captures the 708	  

wetting trend in North America, particularly at higher latitudes. However, the multi-709	  
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model average fails to capture the trend magnitude, for examaple, the higher wetting 710	  

trend (>20 mm/decade) in the eastern US. Figure 28 (a) and (b) show the 30 year running 711	  

trend during the 20th century in the eastern and western US, respectively. The 95% 712	  

model spread brackets the observed precipitation trend magnitude in both regions. The 713	  

higher wetting trend in the observations has slowed down in the last decade in the eastern 714	  

US. The muted magnitude of the trend in Figure 27 seems to be a result of low signal to 715	  

noise ratio (the multi-model median line hovers around the zero line in Figure 28), rather 716	  

than a robust feature of CMIP5 climate models. Some individual models capture very 717	  

well the observed trend magnitude (Figure 28). Drying in Mexico is a dominant but 718	  

incorrect feature in the CMIP5 simulations; a similar feature was also found in CMIP3 719	  

climate simulation (IPCC, 2007).  720	  

Changes in seasonal precipitation were also calculated for winter and summer but 721	  

as the difference between the second-half (1951–99) and the first-half- (1901–50) of the 722	  

20th century (Figure 29). A similar analysis for CMIP3 models of spring and summer 723	  

climatological precipitation showed limited success by the models in simulating the 724	  

observed changes (Ruiz-Barradas and Nigam, 2010). Observations show that winter 725	  

precipitation over the Pacific Northwest, the coastal states of the southeastern US, and the 726	  

northeast of the Great Lakes over Canada has increased, but in areas like southern 727	  

California and the inner states of the southeastern US and the Baja Peninsula 728	  

precipitation has decreased. In summer, precipitation has decreased over the Southeastern 729	  

and Northeastern US, but has increased for regions around the Great Lakes, and northeast 730	  

into Canada, and over parts of Mexico. Those changes are barely captured for any of the 731	  

CMIP5 models. Among the main changes captured by the models are the increase in 732	  
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precipitation over the Pacific Northwest in winter, which is captured by the CCSM4 and 733	  

MPI-ESM-LR models, and the drying over Florida and eastern US in summer which is 734	  

modestly captured by CCSM4 and GFDL-CM3.  735	  

 736	  

8. Discussion and Conclusions 737	  

This paper has evaluated the simulated variability from the CMIP5 multi-model 738	  

ensemble at intraseasonal to multi-decadal time scales for North America and adjoining 739	  

seas. The results show a mixture of performance, with some aspects of climate well 740	  

reproduced but others poorly so. Although ISV in the eastern Pacific exhibits significant 741	  

impacts on regional weather and climate, it remains a great challenge for CMIP5 models 742	  

to realistically represent this form of variability. Among sixteen CMIP5 models examined 743	  

in this study, only seven capture reasonably well the spatial pattern of the leading ISV 744	  

mode over the EPAC, although even these models have biases in simulating the ISV 745	  

amplitude. It is suggested that model fidelity in representing EPAC ISV is closely 746	  

associated with ability to simulate a realistic summer mean state. The presence of mean 747	  

westerly or very weak easterly low-level winds over the EPAC warm pool region tends to 748	  

be conducive for realistic simulations of EPAC ISV. On the other hand, the midsummer 749	  

drought over Central America is not an enigmatic challenge to all global models, which is 750	  

similar to CMIP3 results. Out of the 23 CMIP5 models analyzed, roughly half do a 751	  

reasonable job in simulating the MSD on an individual basis, with a handful performing 752	  

very well. 753	  

Tropical disturbances and cyclone-like storms in the Atlantic and eastern North 754	  

Pacific were evaluated. When all tropical disturbances and storms are considered, the set 755	  
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of models examined does a reasonable job of depicting the density and location of 756	  

activity but with a good deal of scatter across models. In contrast, when only tropical 757	  

cyclones are analyzed, all models severely under predict the number of TCs, especially in 758	  

the peak hurricane season. Experiments with the higher resolution GFDL model, indicate 759	  

that 25-50km resolution models can do a good job at replicating TC frequency and 760	  

variability, although they still cannot simulate the most intense storms. These biases have 761	  

implications for simulated precipitation over the southeastern US which can receive up to 762	  

20% of annual and 30% of warm season precipitation from TCs (Kam et al., 2012) and 763	  

contribute significantly to heavy precipitation (Knight and Davis, 2009). 764	  

The CMIP5 multi-model ensemble mean reproduces the frequency and mean 765	  

amplitude of ENSO events, but does not appear to have improved significantly since 766	  

CMIP3 (Guilyardi et al., 2012). The models do not fully reproduce the phase-locking of 767	  

ENSO to the seasonal cycle, a deficiency noted in CMIP3 models as well (Guilyardi et al. 768	  

2009). Comparison of surface air temperature and precipitation composites associated 769	  

with ENSO events from 17 CMIP5 models show a wide range in model fidelity to the 770	  

observed relationships, with the largest discrepancies occurring during winter and spring. 771	  

Again the situation has not changed since CMIP3 (Joseph and Nigam, 2006; Mo, 2010).  772	  

The observed response pattern in US winter air temperature for the two types of ENSO 773	  

(EP and CP) is a warm northeast to cold southwest pattern for the EP El Niño and a warm 774	  

northwest to cold southeast pattern for the CP El Niño. There are only a few CMIP5 775	  

models that can produce the two types of ENSO and simulate the different winter air 776	  

temperature responses. Overall there has been an improvement since CMIP3 as the 777	  

CMIP5 models can (1) better simulate the observed spatial patterns of the two types of 778	  
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ENSO and (2) have a significantly smaller inter-model diversity in ENSO intensities 779	  

(Kim and Yu, 2012). ENSO asymmetry remains a common bias in climate models with 780	  

implications for simulating tropical decadal variability. Weaker asymmetry in a model 781	  

indicates that the model is in a different dynamical regime than in the observations (Liang 782	  

et al., 2012), in other words, the model has a weaker radiative forcing relative to its 783	  

thermal and mechanical dissipation. 784	  

Five models were analyzed in terms of circulation anomalies and moisture flows 785	  

associated with persistent wet and dry summers in the central US. Some of the models 786	  

have shown improvement, compared to the CMIP3 models, in simulating the major 787	  

summer circulation components in the Great Plains, e.g., the LLJ, and their seasonal 788	  

transitions (see Sheffield et al. 2012), a result largely attributable to the higher spatial 789	  

resolution of CMIP5 models. However, the CMIP5 models still struggle to describe the 790	  

weather systems that develop around the seasonal circulation and their consequent effects 791	  

on summer precipitation and extreme hydrological events. This suggests that simulated 792	  

summer season precipitation anomalies and hydrological extremes in the Great Plains 793	  

result from processes in which the LLJ plays a less important or different role than that 794	  

suggested by observations. 795	  

At decadal scale, the models are evaluated for thr PDO and AMO, and their 796	  

impacts on North American climate. Overall, the CMIP5 models perform well in 797	  

capturing the PDO influence on North American temperature and on West Coast 798	  

precipitation in winter. The largest deficiencies appear to lie in the representation of the 799	  

wintertime precipitation signature over the eastern North America. At first, it may be 800	  

surprising the CMIP5 models perform much better at capturing the PDO temperature and 801	  
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precipitation patterns than the ENSO temperature and precipitation patterns.  However, 802	  

this disparity likely owes to the more direct connection between the PDO and North 803	  

American climate. The PDO index closely tracks the strength of the Aleutian low and the 804	  

associated Pacific/North American (PNA) teleconnection pattern. Therefore, models that 805	  

successfully reproduce the structure and variability of the PNA are likely to capture the 806	  

basic climate features associated with the PDO, although problems with the precipitation 807	  

patterns are evident. ENSO, in contrast, provides a more indirect connection, where 808	  

variations in the tropical Pacific ENSO SST patterns, associated convection anomalies, 809	  

and interaction with the mean state can produce downstream teleconnection patterns that 810	  

vary substantially from the PNA-like patterns typical of ENSO episodes. Therefore, with 811	  

ENSO there is larger opportunity for model errors in various components of the 812	  

phenomenon to result in temperature and precipitation patterns that are distinct from 813	  

observations.  814	  

The representation of AMO variability in the models is reasonable, but they fail to 815	  

capture the timing of the warm and cool phases during the 20th century (also seen in 816	  

CMIP3 models; Knight, 2008). They do, however, simulate warming in the North 817	  

Atlantic in recent decades in line with observations. Teleconnections between the AMO 818	  

and North American climate are not well represented. Less than half of the 23 models 819	  

examined are able to replicate the observed relationship between the AMO and vertical 820	  

wind shear, with implications for their ability to simulate the influence of AMO 821	  

variability on tropical cyclones in the North Atlantic. Both the inaccurate representations 822	  

of the AMO itself and model wind response to the AMO in the tropical North Atlantic 823	  

can result in the model discrepancies in simulating the relationship of the AMO with 824	  
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tropical cyclones in the North Atlantic. Additionally, given the relatively low resolutions 825	  

of current CMIP5 models, future modeling work should emphasize to resolve both 826	  

tropical cyclones and large-scale climate variability and their potential interaction. The 827	  

SST structure and hydroclimate impact of the AMO represents a real challenge for the 828	  

CMIP5 models analyzed. While the majority of models have features resembling the 829	  

observed structure of the SST anomalies they still have room to improve the structure and 830	  

magnitude of the SST anomalies. Except by one of the models, the buildup of the drying 831	  

conditions over the central US as well as the wet conditions along the coastal south 832	  

Atlantic US states from summer to fall are not well captured by the models. 833	  

The observed warming hole over the central to southeast US is replicated only by 834	  

some models indicating that it is driven partly by decadal variability, rather than a forced 835	  

climate signal or land surface feedback. The observed warming hole in the eastern US is 836	  

closely associated with the multi-decadal oscillation in North Atlantic (65-70 years cycle; 837	  

Kumar et al., 2012). The multi-model mean fails to reproduce observed increases in 20th 838	  

century precipitation, but rather shows a robust drying signal in the southern US and 839	  

Mexico. The failure is in part because of higher uncertainty among CMIP5 models 840	  

related to sign and magnitude of precipitation change at regional scale. The drying signal 841	  

in the models is symptomatic of CMIP3 models also (IPCC, 2007) and is likely driven by 842	  

the inadequate connection between increasing precipitation and global SST warming, at 843	  

least for summer, in the majority of models as shown by Fu et al. (2012) for the southern 844	  

US. The observed change in winter and summer climatological precipitation from the 845	  

first half (1901-1950) to the second half (1951-1999) of the 20th century is not well 846	  

simulated by the CMIP5 models. While some success is attained by some models in 847	  
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simulating the increased precipitation over the Pacific Northwest in winter, the drying of 848	  

the US coastal plains is only partially captured by some models. 849	  

For the climate features and models analyzed here, there does not appear to be a 850	  

great deal of improvement since CMIP3. For example, CMIP5 models still cannot 851	  

capture the seasonal timing of ENSO events, that tend to peak in the fall and winter, and 852	  

the spurious drying signal in the southern US and Mexico continues from CMIP3. 853	  

However, some features continue to be well simulated, such as the SST pattern of the 854	  

PDO, and features related to spatial resolution are likely to have improved, such as the 855	  

representation of TCs and terrain-dependent regional processes. Overall, the models are 856	  

less able to capture observed variability and long-term trends than they are the mean 857	  

climate state as evaluated in the first part of this paper (Sheffield et al., 2012). This is 858	  

understandable for decadal to multi-decadal variability which is dependent on the 859	  

models’ internal variability or the sensitivity to external forcing. Some of the biases, 860	  

however, are related to problems in simulating the mean state. 861	  
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Figure Captions 1287	  

 1288	  

Figure 1. Taylor diagram for summer mean (May-September) rainfall over the eastern 1289	  

Pacific (150oW-80oW; 5oS-30oN) simulated in CMIP5 GCMs. The rainfall observations 1290	  

are based on the Tropical Rainfall Measurement Mission (TRMM).  1291	  

 1292	  

Figure 2. Spatial distribution of amplitude (a) and phase (b) of the first leading complex 1293	  

EOF (CEOF1) mode based on 30-90-day band-pass filtered TRMM rainfall during boreal 1294	  

summer (June-September) over the eastern Pacific. To make the spatial phase patterns of 1295	  

the CEOF1 based on the observations and simulations comparable to each other, the 1296	  

spatial phase of CEOF1 for each dataset is adjusted by setting the domain averaged value 1297	  

to be zero over a small box region of 110oW-100oW, 10-15oN. Contours are only 1298	  

displayed where the local variance explained by CEOF1 exceeds 8%; (c): X-axis: Pattern 1299	  

correlation coefficients of the CEOF1 mode between TRMM observations and CMIP5 1300	  

GCM simulations. Y-axis: Relative amplitudes of CEOF1 in model simulations to their 1301	  

observed counterparts. Both pattern correlations and amplitudes are derived by averaging 1302	  

over the area of 5oN-25oN, 140oW-80oW where the active ISV is observed. The black 1303	  

“star” mark represents the TRMM observations.	  1304	  

 1305	  

Figure 3. CMIP5 MMM summertime (June-September) precipitation (mm/day) (top) and 1306	  

MSD strength (mm/day) (bottom) from 23 CMIP5 models, historical experiment (1860-1307	  

2005). Also shown are observed estimates from TRMM 3B43, GPCP, and UNAM. Note 1308	  

that this is the mean of each model’s MSD, not the MSD calculated from the MMM 1309	  
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precipitation climatology. All model output and observational data were regridded onto a 1310	  

common 0.5° grid. The models included in the MMM are: bcc-csm1-1, CanCM4, 1311	  

CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, 1312	  

GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadCM3, HadGEM2-CC, HadGEM2-ES, 1313	  

inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-1314	  

CHEM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M. 1315	  

 1316	  

Figure 4. Storm track density (top) and mean strength (bottom) for ERA Interim and 1317	  

seven CMIP5 models (CanESM2, CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, 1318	  

MPI-ESM-L and MRI-CGCM3). Tracks are based on 6-hourly 850 hPa relative vorticity 1319	  

smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity 1320	  

field. 1321	  

 1322	  

Figure 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the 1323	  

period 1950-2005 (GFDL-ESM2M (1 ensemble member), HadGEM2 (1), MPI-ESM-LR 1324	  

(3), MRI CGCM3 (5) and MIROC5 (1) models) and in observations for the same period. 1325	  

The number of storms in each case is given in the bottom right corner of each panel. One 1326	  

ensemble member is used for each model.  1327	  

 1328	  

Figure 6. Mean number of TCs per month in models (GFDL, HadGEM2 (in the figure 1329	  

HGEM2), MPI, MRI, MIROC5) and observations in the North Atlantic (top left panel) 1330	  

and eastern North Pacific (top right panel), using only ensemble 1 for MRI. Number of 1331	  

TCs per year in the period 1950-2005 in models and observations for the North Atlantic 1332	  
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(bottom left panel) and eastern North Pacific (bottom right panel). The blue box shows 1333	  

the 25-75 percentiles range, with the median shown as a red line. The whiskers and red 1334	  

crosses show the data outside of middle quartiles. 1335	  

 1336	  

Figure 7. A comparison of observed (upper panel) and C180HIRAM simulated (lower 1337	  

panel) hurricane tracks for the N. Atlantic and E. Pacific for 1981-2008. Observations are 1338	  

from the International Best Track Archive for Climate Stewardship (IBTrACS). Only one 1339	  

realization from the 3-member ensemble is shown. 1340	  

 1341	  

Figure 8. Upper panel: a comparison of observed and C180HIRAM simulated annual 1342	  

hurricane count statistics. Blue boxes show the 25-75 percentiles range, with the median 1343	  

shown as a red line and the mean shown as a red star. The whiskers show the maximum 1344	  

and minimum values . The annual statistics are computed based on 3-member ensemble 1345	  

mean for the 1981-2008 period. Lower panels: Observed and model simulated seasonal 1346	  

cycle (number of hurricanes per month) for the N. Atlantic and E. Pacific from the 3-1347	  

member ensemble mean (1=JAN, 12=DEC). 1348	  

 1349	  

Figure 9. Comparison of ENSO-related SAT and precipitation composite patterns 1350	  

between CMIP5 models and observations (CRU TS3.1). Global significance of the 1351	  

differences between SAT (left columns) and precipitation (right columns) composites 1352	  

from CMIP5 models (rows) and observations for each season (designated above each 1353	  

column) and for (a) El Niño and (b) La Niña episodes. The model names are given at the 1354	  

left, and the bottom row corresponds to the CMIP5 ensemble. Light, medium, and dark 1355	  
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red correspond with 90%, 95%, and 99% significance levels, respectively, and blue 1356	  

corresponds to statistically insignificant (αglobal > 0.1) differences. The temperature and 1357	  

precipitation data are regridded to a common equal-area grid with 2ᵒ latitude spacing and 1358	  

variable longitude spacing. We determine whether model patterns are significantly 1359	  

different from the observed patterns if the patterns are statistically distinguishable in a 1360	  

test of field significance based on the “false discovery rate” (FDR) (Benjamini and 1361	  

Hochberg 1995, Wilks 2006). 1362	  

 1363	  

Figure 10. Wintertime composites of ENSO-related SAT and precipitation anomalies in 1364	  

observations and the CMIP5 ensemble.  (a-d) Observed and (e-h) CMIP5 ensemble 1365	  

normalized composites of (a,c,e,g) SAT and (b,d,f,h) precipitation in DJF(0/1) for 1366	  

(a,b,e,f) El Niño and (c,d,g,h) La Niña episodes.  The contour interval is 0.1ᵒC ᵒC-1 for the 1367	  

SAT composites and 0.05 mm day-1 ᵒC-1 for the precipitation composites, with the zero 1368	  

contour line omitted.  In the observed composites, stippling indicates values that are 1369	  

statistically significant at the 95% confidence level based on a two-sided t-test. 1370	  

 1371	  

Figure 11. US winter surface air temperature regressed on the EP (top) and CP (bottom) 1372	  

ENSO indices from the CMIP5 models and observations (air temperature data are from 1373	  

the NCEP-NCAR reanalysis and SSTs are from the HadISST dataset). 1374	  

 1375	  

Figure 12. Scatter plot of pattern correlations between the regression patterns from the 1376	  

CMIP5 models and those from the observations (NCEP-NCAR reanalysis and HadISST 1377	  

dataset) for EP versus CP ENSO. 1378	  
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 1379	  

Figure 13. The sum of the composite SST anomalies between the two phases of ENSO 1380	  

from the HadISST observations and CMIP5 coupled models. Presented here are the 1381	  

results from the coupled models whose corresponding AMIP runs are available for the 1382	  

analysis. The definition of the warm phase and cold phase of ENSO follows that of 1383	  

Zhang et al. (2009). The length of data used in the calculation is 50 years for all the 1384	  

models and observations (1950-99). 1385	  

 1386	  

Figure 14. Standard deviation (upper) and skewness (bottom) of the interannual 1387	  

variability in Niño-3 SST. Data used are the same as for Figure 13. 1388	  

 1389	  

Figure 15. Reanalysis results: a) and b) show, respectively, summertime precipitation 1390	  

anomalies (contours) in wet and dry years, in reference to the Great Plains precipitation, 1391	  

and the vertically integrated moisture fluxes from the surface to the top of the troposphere 1392	  

(arrows).  c) The differences between a) and b). d) and e) show the corresponding 850hPa 1393	  

geopotential height (countour) and 925hPa wind anomalies (arrows) for the wet and dry 1394	  

summer, respectively. Their differences are summerized in f).  1395	  

 1396	  

Figure 16. Same as Fig. 15 but for CCSM4 simulation results. 1397	  

 1398	  

Figure 17. PDO SST patterns in observations and CMIP5 models.  Linear regression of 1399	  

SST upon the PDO index in (a) observations and (b) the CMIP5 ensemble, and (c) the 1400	  

CMIP5 minus observed PDO regression.  The contour interval is 0.2ᵒC in (a) and (b) and 1401	  
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0.1ᵒC in (c), with the zero contour omitted.  Stippling in (c) indicates where the 1402	  

differences are statistically significant at the 95% confidence level based on a two-sided 1403	  

t-test. (d) Standard deviation of the PDO SST regressions within the ensemble.  Contour 1404	  

interval is 0.05ᵒC. 1405	  

 1406	  

Figure 18. Comparison of PDO SAT and precipitation regression patterns between 1407	  

CMIP5 models and observations. Global significance of the differences between SAT 1408	  

(left columns) and precipitation (right columns) regressions from CMIP5 models (rows) 1409	  

and observations for each season.  The model names are given at the left, and the bottom 1410	  

row corresponds to the CMIP5 ensemble.  Light, medium, and dark red correspond with 1411	  

90%, 95%, and 99% significance levels, respectively, and blue corresponds to 1412	  

statistically insignificant (αglobal > 0.1) differences. To highlight multi-decadal variability, 1413	  

a Butterworth 10-year low-pass filter is applied to each PDO index time series, which is 1414	  

then re-standardized. The SAT and precipitation anomalies are regressed in the North 1415	  

America region on this index for each season. The land temperature and precipitation 1416	  

datasets are from CRU TS3.1 for the period of 1901-2009 and all observation and model 1417	  

temperature and precipitation data are regridded to a common equal-area grid, as 1418	  

described in section 5.1. Prior to the regressions, the seasonal SAT and precipitation trend 1419	  

is removed, where the trend is obtained by a LOWESS smoothing with a span of 60 1420	  

years. Significance is calculated on the regression at each grid point with a two-sided t-1421	  

test, with the effective degrees of freedom adjusted for the lag-1 autocorrelation in the 1422	  

residuals (Santer et al., 2000). 1423	  

 1424	  
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Figure 19. December-February PDO SAT and precipitation regression patterns over 1425	  

North America.  Regressions of DJF SAT (a,c) and precipitation (b,d) upon the PDO 1426	  

index in (a,b) observations and (c,d) the CMIP5 ensemble.  The differences between the 1427	  

regression patterns (CMIP5 minus observations) are shown in (e) and (f).   The contour 1428	  

interval is 0.1ᵒC for the SAT regressions (a, c, e) and 0.05 mm/day for the precipitation 1429	  

regressions (b,d,f).  Stippling in (e) and (f) correspond to differences that are significantly 1430	  

different at the 95% confidence level based on a two-sided t-test. 1431	  

 1432	  

Figure 20. Time series of the AMO indices from observation and models.  The AMO 1433	  

index defined as the detrended North Atlantic SST during the Atlantic hurricane season 1434	  

of June to November (JJASON) from the equator to 60°N, 75°W-5°W with the 11-year 1435	  

running mean.  The observed AMO index is plotted in the first panel. The 1436	  

autocorrelations of all AMO indices are plotted in the last panel. SST is from the NOAA 1437	  

extended reconstructed SST version 3 (Smith et al. 2008). 1438	  

 1439	  

Figure 21. Regressions of the JJASON AMO on vertical wind shear. The observed 1440	  

regression is plotted in the first panel.  The vertical wind shear is calculated as the 1441	  

magnitude of the vector difference between winds at 200 mb and 850 mb.  The 1442	  

atmospheric reanalysis data set is the NOAA Earth System Research Laboratory (ESRL) 1443	  

20th Century Reanalysis (20CR) (Compo et al. 2011).  1444	  

 1445	  

Figure 22. Summer and fall regressions of AMO indices on SST and precipitation in 1446	  

observations from HadISSTv1.1 and CRUTS3.1 data sets, and historical simulations of 1447	  
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the 20th century climate from CMIP5 models for the 1901-1999 common period. AMO 1448	  

indices are calculated as area-averaged SST anomalies over the domain (75°-5°W, 0°-1449	  

60°N) which are detrended first and then smoothed via a 11-year running mean. 1450	  

Regressions are calculated for each individual ensemble of a given model, then the mean 1451	  

of the regressions is displayed. The number in parenthesis denotes the number of 1452	  

ensembles used from each model. Blue/red shading denotes negative/positive SST 1453	  

anomalies, while brown/green shading denotes negative/positive precipitation anomalies. 1454	  

Contour interval is 0.1K and 0.02 mm day-1. 1455	  

 1456	  

Figure 23. Observed and multimodel average temperature trends in North America 1457	  

(1930-2004). Observations are from the CRU TS3.1 dataset. The multimodel average is 1458	  

calculated from the best ensemble member from each model, selected based on the 1459	  

highest spatial correlation with observed temperature trends over North America in the 1460	  

respective model. Number in each panel show global mean land only temperature trend 1461	  

(60S to 60N). The models are CanESM2, CCM4, CNRM-CM5, CSIRO-Mk3-6-0, 1462	  

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadCM3, 1463	  

HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-1464	  

ESM, MIROC5, MPI-ESM-LR, MRI-CGCM3. 1465	  

 1466	  

Figure 24. Summer and winter temperature trend (1930-2004), unit: degree C/decade. 1467	  

Multi-model average is based on 19 models, best ensemble member from each model as 1468	  

in Fig. 23. Number in each panel show global mean land only temperature trend (60S to 1469	  

60N). East and West US regions are also shown by boxes. 1470	  
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 1471	  

Figure 25. (a) 30 years running trend in East USA (30N to 47N, and 260E to 280E) DJF 1472	  

temperature trend (b) 30 year running trend difference between East and West USA. 1473	  

West USA is defined as (30N to 47N, and 240E to 260E). Shaded region show 95% 1474	  

uncertainty range calculated from total 96 ensemble members. X axis represent stating of 1475	  

30 year period, for example trend corresponding to 1930 represent trend from 1930 to 1476	  

1959. Five core models are also shown (only first ensemble member from each model). 1477	  

 1478	  

Figure 26. Comparison of observed (left) and model simulated linear trends in daily 1479	  

temperature range  (Tmax -Tmin) during 1951-2000 period. The model ensemble mean 1480	  

daily temperature range (DTR) is computed from 23 models totaling 109 members 1481	  

available in the historical experiment. The contour lines are the inter-model variance of 1482	  

the trends. 1483	  

 1484	  

Figure 27. Observed and multi-model average annual precipitation trend over North 1485	  

America. Observation is the CRU TS3.1 dataset. The multi-model average is calculated 1486	  

from 19 climate models, one ensemble member from each model (see Figure 23). 1487	  

 1488	  

Figure 28. (a) 30 years running annual precipitation trend in East USA; (b) 30 year 1489	  

running annual precipitation trend in West USA. East and West USA regions are shown 1490	  

in Fig. 27. Shaded region is the 95% uncertainty range calculated from a total of 96 1491	  

ensemble members. X axis represents the start year of the 30 year period. For example, 1492	  
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the value at 1930 represents the trend from 1930 to 1959. Five example models are also 1493	  

shown (first ensemble member). 1494	  

 1495	  

Figure 29. Differences between climatologies of the second half (1951-1999) and the 1496	  

first half (1901-1950) of winter and summer precipitation in observations from 1497	  

CRUTS3.1 data set, and historical simulations of the 20th century climate from CMIP5 1498	  

models. The number in parenthesis denotes the number of ensembles used from each 1499	  

model. Brown/green shading denotes negative/positive precipitation anomalies; contour 1500	  

interval is 0.1 mm day-1. 1501	  

 1502	  
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1504	  
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Tables 1504	  

Table 1. CMIP5 models evaluated and their attributes. 1505	  

Model	   Center	   Atmospheric 

Horizontal 

Resolution 

(lon.  x lat.)	  

Number 

of model 

levels	  

Reference	  

ACCESS1-0	   Commonwealth Scientific and 

Industrial Research 

Organization/Bureau of 

Meteorology, Australia	  

1.875 x 1.25	   38	   Bi et al. 

(2012)	  

BCC-CSM1.1	   Beijing Climate Center, China 

Meteorological Administration, 

China	  

2.8 x 2.8   	   26	   Xin et al. 

(2012)	  

CanCM4	   Canadian Centre for Climate 

Modelling and Analysis, Canada	  

2.8 x 2.8	   35	   Chylek et 

al. (2011)	  

CanESM2	   Canadian Center for Climate 

Modeling and Analysis, Canada	  

2.8 x 2.8   	   35	   Arora et 

al. (2011)	  

CCSM4	   National Center for Atmospheric 

Research, USA	  

1.25 x 0.94	   26	   Gent et al. 

(2011)	  

CESM1- Community Earth System Model 1.4 x 1.4	   26	   Gent et al. 
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CAM5-1-FV2 Contributors (NSF-DOE-	  

NCAR) 

(2011)	  

CNRM-

CM5.1	  

National Centre for 

Meteorological Research, France	  

1.4 x 1.4	   31	   Voldoire 

et al. 

(2011)	  

CSIRO-

MK3.6	  

Commonwealth Scientific and 

Industrial Research 

Organization/Queensland 

Climate Change Centre of 

Excellence, AUS	  

1.8 x 1.8	   18	   Rotstayn 

et al. 

(2010)	  

EC-EARTH	   EC-EARTH consortium	   1.125 x 1.12	   62	   Hazeleger 

et al. 

(2010)	  

FGOALS-

S2.0	  

LASG, Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences	  

2.8 x 1.6	   26	   Bao et al. 

(2012)	  

GFDL-CM3	   NOAA Geophysical Fluid 

Dynamics Laboratory, USA	  

2.5 x 2.0	   48	   Donner et 

al. (2011)	  

GFDL-

ESM2G/M	  

NOAA Geophysical Fluid 

Dynamics Laboratory, USA	  

2.5 x 2.0	   48	   Donner et 

al. (2011)	  
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GISS-E2-H/R	   NASA Goddard Institute for 

Space Studies, USA	  

2.5 x 2.0	   40	   Kim et al. 

(2012)	  

HadCM3	   Met Office Hadley Centre, UK	   3.75 x 2.5	   19	   Collins et 

al. (2001)	  

HADGEM2-

CC 

(Chemistry 

coupled)	  

Met Office Hadley Centre, UK	   1.875 x 1.25	   60	   Jones et al. 

(2011)	  

HadGEM2-

ES	  

Met Office Hadley Centre, UK	   1.875 x 1.25	   60	   Jones et 

al. (2011)	  

INMCM4	   Institute for Numerical 

Mathematics, Russia	  

2 x 1.5	   21	   Volodin et 

al. (2010)	  

IPSL-CM5A-

LR	  

Institut Pierre Simon Laplace, 

France	  

3.75 x 1.8	   39	   Dufresne 

et al. 

(2012)	  

IPSL-CM5A-

MR	  

Institut Pierre Simon Laplace, 

France	  

2.5 x 1.25	   39	   Dufresne 

et al. 

(2012)	  

MIROC4h	   Atmosphere and Ocean Research 

Institute (The University of 

0.56 x 0.56	   56	   Sakamoto 

et al. 
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Tokyo), National Institute for 

Environmental Studies, and 

Japan Agency for Marine-Earth 

Science and Technology, Japan	  

(2012)	  

MIROC5	   Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), National Institute for 

Environmental Studies, and 

Japan Agency for Marine-Earth 

Science and Technology, Japan	  

1.4 x 1.4	   40	   Watanabe 

et al. 

(2010)	  

MIROC-

ESM	  

Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), and National Institute 

for Environmental Studies	  

2.8 x 2.8	   80	   Watanabe 

et al. 

(2010)	  

MIROC-

ESM-CHEM	  

Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), and National Institute 

for Environmental Studies	  

2.8 x 2.8	   80	   Watanabe 

et al. 

(2010)	  
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MPI-ESM-

LR	  

Max Planch Institute for 

Meteorology, Germany	  

1.9 x 1.9	   47	   Zanchettin 

et al. (2012)	  

MRI-CGCM3	   Meteorological Research 

Institute, Japan	  

1.1 x 1.1	   48	   Yukimoto 

et al. 

(2011)	  

NorESM1-M	   Norwegian Climate Center, 

Norway	  

2.5 x 1.9	   26	   Zhang et al. 

(2012)	  

	  1506	  

1507	  
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Table 2. Observational and reanalysis datasets used in the evaluations 1507	  

Dataset	   Type	   Spatial 

Domain	  

Temporal Domain	   Reference	  

Precipitation	  

TMPA 3B42 V6	   Satellite	   0.25 deg, 

50S-50N	  

3-hourly/monthly, 

1998-2010	  

Huffman et 

al. 2007	  

CRU TS3.1	   Gauge	   0.5 deg, 

global land	  

Monthly, 1901-2008	   Mitchell et 

al. (2005)	  

CPC unified	   Gauge	   0.5 deg, US	   Daily, 1948-2010	   Xie et al., 

2010	  

Temperature	  

CRU TS3.1	   Gauge	   0.5 deg, 

global land	  

Monthly, 1901-2008	   Mitchell et 

al. (2005)	  

Sea Surface 

Temperature 	  

	   	   	   	  

HadISST	   In situ/satellie	   Global 

Oceans, 1.0 

deg	  

Monthly, 1870-present	   Rayner et 

al. (2003)	  

ERSSTv3b	   In situ	   Global 

Oceans, 2.0 

Monthly, 1854-present	   Smith et al. 

(2008)	  
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deg	  

Reanalyses	  

NCEP-NCAR	   Model 

reanalysis	  

~1.9 deg, 

global	  

6-hourly, 1948-present	   Kalnay et 

al. (1996)	  

NCEP-DOE	   Model 

reanalysis	  

~1.9 deg, 

global	  

6-hourly, 1979-present	   Kanamitsu 

et al. 

(200X)	  

20CR	   Model 

reanalysis	  

~0.3 deg, 

global	  

6-hourly, 1871-present	   Compo et 

al. (2011)	  

ERA-interim	   Model 

reanalysis	  

1.5 deg, 

global	  

6-hourly, 1979-present	   Dee et al. 

(2011)	  

 

Storm Tracks	  

National 

Hurricane Center 

best track tropical 

cyclone data	  

In-situ/satellite	   Storm tracks, 

Eastern N. 

Pacific and 

N. Atlantic	  

6-hourly, 1851-present 

(Atlantic), 1949-

present (eastern N. 

Pacific)	  

Jarvinen et 

al. (1984)	  

IBTrACS	   Best track 

datasets from 

various 

Storm 

tracks, 

global 

6-hourly, 1842-2010	   Knapp et 

al. (2010)	  
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agencies	   oceans	  

	  1508	  
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 1511	  

 1512	  
Figure 1. Taylor diagram for summer mean (May-September) rainfall over the eastern 1513	  
Pacific (150oW-80oW; 5oS-30oN) simulated in CMIP5 GCMs. The rainfall observations 1514	  
are based on the Tropical Rainfall Measurement Mission (TRMM).  1515	  
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 1516	  
Figure 2. Spatial distribution of amplitude (a) and phase (b) of the first leading complex 1517	  
EOF (CEOF1) mode based on 30-90-day band-pass filtered TRMM rainfall during boreal 1518	  
summer (June-September) over the eastern Pacific. To make the spatial phase patterns of 1519	  
the CEOF1 based on the observations and simulations comparable to each other, the 1520	  
spatial phase of CEOF1 for each dataset is adjusted by setting the domain averaged value 1521	  
to be zero over a small box region of 110oW-100oW, 10-15oN. Contours are only 1522	  
displayed where the local variance explained by CEOF1 exceeds 8%; (c): X-axis: Pattern 1523	  
correlation coefficients of the CEOF1 mode between TRMM observations and CMIP5 1524	  
GCM simulations. Y-axis: Relative amplitudes of CEOF1 in model simulations to their 1525	  
observed counterparts. Both pattern correlations and amplitudes are derived by averaging 1526	  
over the area of 5oN-25oN, 140oW-80oW where the active ISV is observed. The black 1527	  
“star” mark represents the TRMM observations.	  1528	  
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 1529	  

 1530	  

Figure 3. CMIP5 MMM summertime (June-September) precipitation (mm/day) (top) and 1531	  
MSD strength (mm/day) (bottom) from 23 CMIP5 models, historical experiment (1860-1532	  
2005). Also shown are observed estimates from TRMM 3B43, GPCP, and UNAM. Note 1533	  
that this is the mean of each model’s MSD, not the MSD calculated from the MMM 1534	  
precipitation climatology. All model output and observational data were regridded onto a 1535	  
common 0.5° grid. The models included in the MMM are: bcc-csm1-1, CanCM4, 1536	  
CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, 1537	  
GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadCM3, HadGEM2-CC, HadGEM2-ES, 1538	  
inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-1539	  
CHEM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M. 1540	  

1541	  
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 1541	  

 1542	  

 1543	  

Figure 4. Storm track density (top) and mean strength (bottom) for ERA Interim and 1544	  
seven CMIP5 models (CanESM2, CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, 1545	  
MPI-ESM-L and MRI-CGCM3). Tracks are based on 6-hourly 850 hPa relative vorticity 1546	  
smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity 1547	  
field. 1548	  
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 1549	  

Figure 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the 1550	  
period 1950-2005 (GFDL-ESM2M (1 ensemble member), HadGEM2 (1), MPI-ESM-LR 1551	  
(3), MRI CGCM3 (5) and MIROC5 (1) models) and in observations for the same period. 1552	  
The number of storms in each case is given in the bottom right corner of each panel. One 1553	  
ensemble member is used for each model.  1554	  
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 1555	  

Figure 6. Mean number of TCs per month in models (GFDL, HadGEM2 (in the figure 1556	  
HGEM2), MPI, MRI, MIROC5) and observations in the North Atlantic (top left panel) 1557	  
and eastern North Pacific (top right panel), using only ensemble 1 for MRI. Number of 1558	  
TCs per year in the period 1950-2005 in models and observations for the North Atlantic 1559	  
(bottom left panel) and eastern North Pacific (bottom right panel). The blue box shows 1560	  
the 25-75 percentiles range, with the median shown as a red line. The whiskers and red 1561	  
crosses show the data outside of middle quartiles. 1562	  

1563	  
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  1563	  

Figure 7. A comparison of observed (upper panel) and C180HIRAM simulated (lower 1564	  
panel) hurricane tracks for the N. Atlantic and E. Pacific for 1981-2008. Observations are 1565	  
from the International Best Track Archive for Climate Stewardship (IBTrACS). Only one 1566	  
realization from the 3-member ensemble is shown. 1567	  
 1568	  
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 1569	  

Figure 8. Upper panel: a comparison of observed and C180HIRAM simulated annual 1570	  
hurricane count statistics. Blue boxes show the 25-75 percentiles range, with the median 1571	  
shown as a red line and the mean shown as a red star. The whiskers show the maximum 1572	  
and minimum values . The annual statistics are computed based on 3-member ensemble 1573	  
mean for the 1981-2008 period. Lower panels: Observed and model simulated seasonal 1574	  
cycle (number of hurricanes per month) for the N. Atlantic and E. Pacific from the 3-1575	  
member ensemble mean (1=JAN, 12=DEC). 1576	  
  1577	  

 1578	  

1579	  
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1579	  
Figure 9. Comparison of ENSO-related SAT and precipitation composite patterns 1580	  
between CMIP5 models and observations (CRU TS3.1). Global significance of the 1581	  
differences between SAT (left columns) and precipitation (right columns) composites 1582	  
from CMIP5 models (rows) and observations for each season (designated above each 1583	  
column) and for (a) El Niño and (b) La Niña episodes. The model names are given at the 1584	  
left, and the bottom row corresponds to the CMIP5 ensemble. Light, medium, and dark 1585	  
red correspond with 90%, 95%, and 99% significance levels, respectively, and blue 1586	  
corresponds to statistically insignificant (αglobal > 0.1) differences. The temperature and 1587	  
precipitation data are regridded to a common equal-area grid with 2ᵒ latitude spacing and 1588	  
variable longitude spacing. We determine whether model patterns are significantly 1589	  
different from the observed patterns if the patterns are statistically distinguishable in a 1590	  
test of field significance based on the “false discovery rate” (FDR) (Benjamini and 1591	  
Hochberg 1995, Wilks 2006).  1592	  

1593	  
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 1593	  

	  1594	  

	  1595	  

Figure 10. Wintertime composites of ENSO-related SAT and precipitation anomalies in 1596	  
observations and the CMIP5 ensemble.  (a-d) Observed and (e-h) CMIP5 ensemble 1597	  
normalized composites of (a,c,e,g) SAT and (b,d,f,h) precipitation in DJF(0/1) for 1598	  
(a,b,e,f) El Niño and (c,d,g,h) La Niña episodes.  The contour interval is 0.1ᵒC ᵒC-1 for the 1599	  
SAT composites and 0.05 mm day-1 ᵒC-1 for the precipitation composites, with the zero 1600	  
contour line omitted.  In the observed composites, stippling indicates values that are 1601	  
statistically significant at the 95% confidence level based on a two-sided t-test. 1602	  
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Figure 11. US winter surface air temperature regressed on the EP (top) and CP (bottom) 1603	  
ENSO indices from the CMIP5 models and observations (air temperature data are from 1604	  
the NCEP-NCAR reanalysis and SSTs are from the HadISST dataset). 1605	  
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 1606	  

Figure 12. Scatter plot of pattern correlations between the regression patterns from the 1607	  
CMIP5 models and those from the observations (NCEP-NCAR reanalysis and HadISST 1608	  
dataset) for EP versus CP ENSO. 1609	  

 1610	  

1611	  
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 1611	  

Figure 13. The sum of the composite SST anomalies between the two phases of ENSO 1612	  
from the HadISST observations and CMIP5 coupled models. Presented here are the 1613	  
results from the coupled models whose corresponding AMIP runs are available for the 1614	  
analysis. The definition of the warm phase and cold phase of ENSO follows that of 1615	  
Zhang et al. (2009). The length of data used in the calculation is 50 years for all the 1616	  
models and observations (1950-99). 1617	  
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 1618	  

 1619	  

Figure 14. Standard deviation (upper) and skewness (bottom) of the interannual 1620	  
variability in Niño-3 SST. Data used are the same as for Figure 13. 1621	  
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	  1622	  

Figure 15. Reanalysis results: a) and b) show, respectively, summertime precipitation 1623	  
anomalies (contours) in wet and dry years, in reference to the Great Plains precipitation, 1624	  
and the vertically integrated moisture fluxes from the surface to the top of the troposphere 1625	  
(arrows).  c) The differences between a) and b). d) and e) show the corresponding 850hPa 1626	  
geopotential height (countour) and 925hPa wind anomalies (arrows) for the wet and dry 1627	  
summer, respectively. Their differences are summerized in f).  1628	  
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	  1629	  

Figure 16. Same as Fig. 15 but for CCSM4 simulation results. 1630	  

1631	  
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	  1631	  

Figure 17. PDO SST patterns in observations and CMIP5 models.  Linear regression of 1632	  
SST upon the PDO index in (a) observations and (b) the CMIP5 ensemble, and (c) the 1633	  
CMIP5 minus observed PDO regression.  The contour interval is 0.2ᵒC in (a) and (b) and 1634	  
0.1ᵒC in (c), with the zero contour omitted.  Stippling in (c) indicates where the 1635	  
differences are statistically significant at the 95% confidence level based on a two-sided 1636	  
t-test. (d) Standard deviation of the PDO SST regressions within the ensemble.  Contour 1637	  
interval is 0.05ᵒC. 1638	  

 1639	  

 1640	  

1641	  
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1641	  
Figure 18. Comparison of PDO SAT and precipitation regression patterns between 1642	  
CMIP5 models and observations. Global significance of the differences between SAT 1643	  
(left columns) and precipitation (right columns) regressions from CMIP5 models (rows) 1644	  
and observations for each season.  The model names are given at the left, and the bottom 1645	  
row corresponds to the CMIP5 ensemble.  Light, medium, and dark red correspond with 1646	  
90%, 95%, and 99% significance levels, respectively, and blue corresponds to 1647	  
statistically insignificant (αglobal > 0.1) differences. To highlight multi-decadal variability, 1648	  
a Butterworth 10-year low-pass filter is applied to each PDO index time series, which is 1649	  
then re-standardized. The SAT and precipitation anomalies are regressed in the North 1650	  
America region on this index for each season. The land temperature and precipitation 1651	  
datasets are from CRU TS3.1 for the period of 1901-2009 and all observation and model 1652	  
temperature and precipitation data are regridded to a common equal-area grid, as 1653	  
described in section 5.1. Prior to the regressions, the seasonal SAT and precipitation trend 1654	  
is removed, where the trend is obtained by a LOWESS smoothing with a span of 60 1655	  
years. Significance is calculated on the regression at each grid point with a two-sided t-1656	  
test, with the effective degrees of freedom adjusted for the lag-1 autocorrelation in the 1657	  
residuals (Santer et al., 2000). 1658	  



	   96 

 1659	  

1660	  
Figure 19. December-February PDO SAT and precipitation regression patterns over 1661	  
North America.  Regressions of DJF SAT (a,c) and precipitation (b,d) upon the PDO 1662	  
index in (a,b) observations and (c,d) the CMIP5 ensemble.  The differences between the 1663	  
regression patterns (CMIP5 minus observations) are shown in (e) and (f).   The contour 1664	  
interval is 0.1ᵒC for the SAT regressions (a, c, e) and 0.05 mm/day for the precipitation 1665	  
regressions (b,d,f).  Stippling in (e) and (f) correspond to differences that are significantly 1666	  
different at the 95% confidence level based on a two-sided t-test.   1667	  

 1668	  
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 1669	  

Figure 20. Time series of the AMO indices from observation and models.  The AMO 1670	  
index defined as the detrended North Atlantic SST during the Atlantic hurricane season 1671	  
of June to November (JJASON) from the equator to 60°N, 75°W-5°W with the 11-year 1672	  
running mean.  The observed AMO index is plotted in the first panel. The 1673	  
autocorrelations of all AMO indices are plotted in the last panel. SST is from the NOAA 1674	  
extended reconstructed SST version 3 (Smith et al. 2008). 1675	  
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 1676	  
 1677	  

Figure 21. Regressions of the JJASON AMO on vertical wind shear. The observed 1678	  
regression is plotted in the first panel.  The vertical wind shear is calculated as the 1679	  
magnitude of the vector difference between winds at 200 mb and 850 mb. The 1680	  
atmospheric reanalysis data set is the NOAA Earth System Research Laboratory (ESRL) 1681	  
20th Century Reanalysis (20CR) (Compo et al. 2011).  1682	  
 1683	  
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 1684	  

Figure 22. Summer and fall regressions of AMO indices on SST and precipitation in 1685	  
observations from HadISSTv1.1 and CRUTS3.1 data sets, and historical simulations of 1686	  
the 20th century climate from CMIP5 models for the 1901-1999 common period. AMO 1687	  
indices are calculated as area-averaged SST anomalies over the domain (75°-5°W, 0°-1688	  
60°N) which are detrended first and then smoothed via a 11-year running mean. 1689	  
Regressions are calculated for each individual ensemble of a given model, then the mean 1690	  
of the regressions is displayed. The number in parenthesis denotes the number of 1691	  
ensembles used from each model. Blue/red shading denotes negative/positive SST 1692	  
anomalies, while brown/green shading denotes negative/positive precipitation anomalies. 1693	  
Contour interval is 0.1K and 0.02 mm day-1. 1694	  

 1695	  

1696	  
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 1696	  

 1697	  

Figure 23. Observed and multimodel average temperature trends in North America 1698	  
(1930-2004). Observations are from the CRU TS3.1 dataset. The multimodel average is 1699	  
calculated from the best ensemble member from each model, selected based on the 1700	  
highest spatial correlation with observed temperature trends over North America in the 1701	  
respective model. Number in each panel show global mean land only temperature trend 1702	  
(60S to 60N). The models are CanESM2, CCM4, CNRM-CM5, CSIRO-Mk3-6-0, 1703	  
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadCM3, 1704	  
HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-1705	  
ESM, MIROC5, MPI-ESM-LR, MRI-CGCM3. 1706	  
 1707	  

1708	  



	   101 

 1708	  

 1709	  

Figure 24. Summer and winter temperature trend (1930-2004), unit: degree C/decade. 1710	  
Multi-model average is based on 19 models, best ensemble member from each model as 1711	  
in Fig. 23. Number in each panel show global mean land only temperature trend (60S to 1712	  
60N). East and West USA regions are also shown by boxes. 1713	  

 1714	  

 1715	  

 1716	  

 1717	  
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 1718	  

Figure 25. (a) 30 years running trend in East USA (30N to 47N, and 260E to 280E) DJF 1719	  
temperature trend (b) 30 year running trend difference between East and West USA. 1720	  
West USA is defined as (30N to 47N, and 240E to 260E). Shaded region show 95% 1721	  
uncertainty range calculated from total 96 ensemble members. X axis represent stating of 1722	  
30 year period, for example trend corresponding to 1930 represent trend from 1930 to 1723	  
1959. Five core models are also shown (only first ensemble member from each model). 1724	  

 1725	  
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 1726	  
Figure 26. Comparison of observed (left) and model simulated linear trends in daily 1727	  
temperature range  (Tmax -Tmin) during 1951-2000 period. The model ensemble mean 1728	  
daily temperature range (DTR) is computed from 23 models totaling 109 members 1729	  
available in the historical experiment. The contour lines are the inter-model variance of 1730	  
the trends. 1731	  
 1732	  

1733	  
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 1733	  

 1734	  

Figure 27. Observed and multi-model average annual precipitation trend over North 1735	  
America. Observation is the CRU TS3.1 dataset. The multi-model average is calculated 1736	  
from 19 climate models, one ensemble member from each model (see Figure 23). 1737	  

1738	  
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 1738	  

 1739	  

Figure 28. (a) 30 years running annual precipitation trend in East USA; (b) 30 year 1740	  
running annual precipitation trend in West USA. East and West USA regions are shown 1741	  
in Fig. 27. Shaded region is the 95% uncertainty range calculated from a total of 96 1742	  
ensemble members. X axis represents the start year of the 30 year period. For example, 1743	  
the value at 1930 represents the trend from 1930 to 1959. Five example models are also 1744	  
shown (first ensemble member). 1745	  

1746	  
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 1746	  

Figure 29. Differences between climatologies of the second half (1951-1999) and the first 1747	  
half (1901-1950) of winter and summer precipitation in observations from CRUTS3.1 1748	  
data set, and historical simulations of the 20th century climate from CMIP5 models. The 1749	  
number in parenthesis denotes the number of ensembles used from each model. 1750	  
Brown/green shading denotes negative/positive precipitation anomalies; contour interval 1751	  
is 0.1 mm day-1. 1752	  

 1753	  
 1754	  

 1755	  


